数学里e约等于多少呀?

数学里e约等于2.71828自然数e约等于2.71828,为数学中一个常数,是一个无限不循环小数,且为超越数。e是一个数学常数,是自然对数函数的底数,有时又称它为欧拉数,以瑞士数学课欧拉命名的。e的含义是单位时间内,持续的翻倍增长所能达到的极限值。

数学的含义概况

古代文明的数学更多地是一种实用的技术,虽然在许多方面他们的努力已经远远超过实际的需求,但这也好比各种实用技术都会发展出某种游戏性的或艺术性的维度,但实用旨趣仍然是一个基调,这和希腊之后的数学有很大区别。

比如巴比伦人会对演算结果进行“验证”,但并不在意逻辑演绎意义上的“证明”。另外,他们往往对精确解和近似解不作区分。

数学中的e等于多少?

e约等于2.71828182。

小写e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名。e=2.71828182……是微积分中的两个常用极限之一。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。

e的起源:

在1690年,莱布尼茨在信中第一次提到常数e。在论文中第一次提到常数e,是约翰·纳皮尔于1618年出版的对数著作附录中的一张表。

但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉·奥特雷德制作。第一次把e看为常数的是雅各·伯努利。欧拉也听说了这一常数,所以在27岁时,用发表论文的方式将e“保送”到微积分。