一、余角的定义和性质是什么?
余角的定义和性质是:余角是如果两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角余角的性质:同角(或等角)的余角相等。
余角是不能单独出现的,只能说角A和角B互为余角或者角A是角B的余角,但不能说角A为余角。
余角和补角的性质:
两个角和为90度这两个角互为余角,两个角的和为180度,这两个角互为补角,可看出余角和补角说的都是两角关系,所似余角和补角的定义就号它们的性质
余角性质:同角的余角相等,比如:∠A+∠B=90°,∠A+∠C=90°,那么∠C=∠B。等角的余角相等,比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D,那么∠C=∠B。
补角性质:同角的补角相等,比如:∠A+∠B=180°,∠A+∠C=180°,那么∠C=∠B。等角的补角相等,比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D,那么∠C=∠B。
二、余角的定义?
如果两个角的和是直角(90°),那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角。 两角度数之和为90°,就说明这两个角互为余角。
三、余角是什么意思?
余角释义:两角之和等于直角(90˚)时,这两个角互为余角。如直角三角形的两锐角互为余角。
若∠A +∠C=90°,即有:
∠A=90°-∠C,∠C=90°-∠A,
从而∠A的余角=90°-∠A,∠C的余角=90°-∠C。
备注:数学中互余的两个角都是锐角,不能是直角、钝角或平角等。余角是不能单独出现的,只能说角A和角B互为余角或者角A是角B的余角,但不能说角A为余角。
扩展资料:
1、同角或等角的余角相等。
若∠A+∠B=90°,∠D+∠C=90°,∠A=∠D
则有∠C=∠B。即得等角的余角相等。
2、关于余角的三角函数结论:
若 ∠A+∠B=90°,则有sinA=cosB,cosA=sinB;tanA×tanB=1。
若有一角∠α,使得∠β与∠α有如下关系:∠β+∠α=90°
且有一∠γ,使得∠β与其有如下关系:∠β+∠γ=180°
则我们可以说∠γ是∠α的余角的补角。
如果两个角的和是直角,那么称这两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。
同角(等角)的余角(补角)相等。
参考资料来源:百度百科——余角
四、余角的定义
数学中,如果两个角的和为直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角。
若∠A+∠C=90°,即有:
∠A=90°-∠C,∠C=90°-∠A,
从而∠A的余角=90°-∠A,∠C的余角=90°-∠C。
备注:数学中互余的两个角都是锐角,不能是直角、钝角或平角等。余角是不能单独出现的,只能说角A和角B互为余角或者角A是角B的余角,但不能说角A为余角。
2余角的性质
1.同角或等角的余角相等
若∠A+∠B=90°,∠D+∠C=90°,∠A=∠D
则有∠C=∠B。即得等角的余角相等。
2.关于余角的三角函数结论:
若∠A+∠B=90°,则有sinA=cosB,cosA=sinB;tanA×tanB=1。