一、广义积分敛散性?

1、这道广义积分敛散性判断过程见上图

2、此广义积分是收敛的。

3、这广义积分属于无穷限的广义积分,由于求出的积分值等于1,所以,广义积分是收敛的。

具体的广义积分敛散性判断的详细步骤及说明见上。

二、广义积分的敛散性判断

  广义积分判断敛散性的方法是积分后计算出来是定值,不是无穷大,就是收敛;积分后计算出来的不是定值,是无穷大,就是发散 。广义积分判别法只要研究被积函数自身的性态,即可知其敛散性。

  反常积分又叫广义积分,是对普通定积分的推广,指含有无穷上限/下限,或者被积函数含有瑕点的积分,前者称为无穷限广义积分,后者称为瑕积分(又称无界函数的反常积分)。

 广义积分判别法不仅比传统的判别法更加精细,而且避免了传统判别法需要寻找参照函数的困难。

 定积分的积分区间都是有限的,被积函数都是有界的。但在实际应用和理论研究中,还会遇到一些在无限区间上定义的函数或有限区间上的无界函数,对它们也需要考虑类似于定积分的问题。

 因此,有必要对定积分的概念加以推广,使之能适用于上述两类函数。这种推广的积分,由于它异于通常的定积分,故称之为广义积分,也称之为反常积分。

三、广义积分收敛判别法

广义积分又叫反常积分,广义积分判别法,避免了传统判别法需要寻找参照函数的困难。只要研究被积函数自身的性态,即可知其敛散性。

一般来说不定积分问题出现在两个端点如果中间也有不连续值就只能将其分段研究通过研究在端点的敛散性就可以得到这个不定积分的敛散性具体方法要视具体题目不同来分开看。

积分来收敛性是对于广义积分来言.对于广义积分来说,分为两类,自第一类广义积分,是f(x)在无穷区间上的积分,如果积分后能得到一个数,即收敛;百第二类广义积分是,f(x)在(a,b),无穷间断点或震荡间断点,若积分后等到一个数,即收敛.对于普通的定积分来言,积分的条件是:知有界,有限个一类间道断点,所以,为正常积分,即收敛.

结果只有C收敛,这种简单的瑕积分不需要什么判别法,只用把定积分算出来即可定积分的几何意义是曲线与x轴围成的面积,若积分为无穷大,即面积是无穷大,意味发散的只有第四个结果是最特别的,从几何意义理解,它的面积不是趋向无穷大而是y=sinx与x轴围成的面积,而sinx是有界函数,面积可以是负数当x趋向无穷时,这个面积中途会出现无限次重叠、抵消转变即面积会在-2和2之间不断变动.不会有固定结果所以面积结果是"不存在",并不是无穷大.

四、广义积分是什么

广义积分是在一些实际问题中,我们常遇到积分区间为无穷区间,或者被积函数为无界函数的积分,它们已知不属于定积分了。广义积分分为无穷限的广义积分和无界函数的广义积分。

五、广义积分定义,它的发散和收敛的通俗解释

通俗的讲,积分是指函数图形与坐标轴围成的面积.例如f(x)从a到b的积分就等于曲线f(x),直线x=a,x=b和x轴围成的图形的面积.当然,这块面积在x轴上方的部分取为正,下方取为负.

然而有时候这个面积会少一条边.比如,积分上下限a或者b二者有一个是无穷大或者两个都为无穷大.例如f(x)从a到正无穷大的积分,它表示f(x)、直线x=a、x轴围成的面积.当然,因为缺少一条边,这块面积不是封闭的,它是向x轴正方向无穷延生的.又如,虽然积分上下限为确定值,但是函数图形本身无法和直线x=a、x=b、x轴围成封闭的面积.例如f(x)=1/x从0到1的积分,表示y=1/x、x=0、x=1、x轴围成的面积.因为f(x)=1/x在0出的值为无穷大,所以这块面积也不是封闭的,它是向y轴延生的.像这种积分表示的面积无限延生的情况,称之为广义积分.

因为面积无限延生,因此有可能面积的值为无穷大,例如y=x从0到正无穷的积分表示y=x、x=0和x轴围成的面积.任何一个人都应该知道这个面积应该为无穷大.像这种积分表示的面积为无穷大的情况,称之为广义积分发散.反之如果这个面积为一个有限数值,则称之为广义积分收敛.