一、什么是荷叶效应?

莲花效应,指莲花的自洁现象20世纪70年代,波恩大学的植物学家巴特洛特在研究植物叶子表面时发现,光滑的叶子表面有灰尘,要先清洗才能在显微镜下观察,而莲叶等可以防水的叶子表面却总是干干净净。他们发现,莲叶表面的特殊结构有自我清洁功能。莲花出污泥而不染,自古以来就被人们认为是纯洁的象征,所以这一自我清洁功能又被称为“莲花效应”。

二、什么是荷叶效应?为什么它们会出淤泥而不染?是因为什么?

你看到的水滴是晚上的露水。在晚上,当温度下降时,空气中的水蒸气液化成小水滴......。当附着在荷叶上时,就变成了露水。然而,传统叶片的露水很容易掉落。为什么荷花在下午时分仍能保持晶莹剔透?这要从荷叶的特殊微观结构说起。从流体力学的角度看,这是因为荷叶表面的特殊结构形成了超疏水现象。最初,在荷叶的表面有一层由叶子表皮细胞产生的角质层。这层角质层是蜡质的、油性的(疏水性),不透水,但它可以通过阳光。

水滴在荷叶上滚动的秘密在于,荷叶的表面并不光滑。通过电子显微镜发现,在荷叶表面有许多高度约为5~9微米、距离约为12微米的乳头,在每个乳头的表面有许多直径为200纳米的蜡质加工。这相当于在 "微米结构 "上生长出 "纳米结构"。在荷叶表面,这种 "微纳结构 "看起来就像一个密密麻麻的 "小柱子",再加上蜡质的排斥作用,使水滴无法钻进 "小柱子 "的缝隙,只能在 "小柱子 "的顶部跑来跑去。

因此,水滴和荷叶表面表现出排斥性,这被称为 "荷叶效应 "或 "疏水效应"。当一些污染物落在荷叶表面时,随着水滴的滚动,它们很容易被带离。万物都由原子构成,我们所能触碰的实体本质就是原子的电场,或者说电子云。这就是荷叶 "出淤泥而不染 "的奥秘所在。

荷叶的表面效应,有自洁功能。如果表面与水滴之间的排斥作用很强,就被称为超疏水表面,它也善于减少阻力。如果荷叶乳头上的蜡质流失,荷叶的超疏水特性就会被破坏。但是,荷叶本身可以不断地分泌蜡,有了蜡的补充,就可以恢复超疏水的特性。

三、荷叶滴水不沾的原理是什么?荷叶效应到底是什么?

今天是7月4日,而根据最新消息,我国科学家发明了荷叶模仿技术已经成功地运用,并且起到了一定的效果,于是很多网友都非常好奇,为什么荷叶会有这么大的本事呢?荷叶滴水不沾的原理是什么呢?荷叶效应又到底是什么呢?

第一、荷叶滴水不沾的原理也就是荷叶效应,其中第一个原因就是因为荷叶表层的一层蜡物质

荷叶滴水不沾的原因是科学家一直想要探讨的话题,而根据我国科学家的研究发现,荷叶表面有一层特别特殊的粗糙结构,这种结构必须要在很厉害的显微镜的视角里面才能看见,在纳米级别的视角下,我们可以看到荷叶表面有很多6-8微米的突触,这些突触都非常的细,并且都是由直径为200纳米的突起慢慢的构成的,在这些突起上都含有一种蜡物质。就有点像我们的生活中的蜡烛一样,这样蜡物质可以很好地保护荷叶,从而达到疏水的目的,所以说荷叶一方面来说正式凭借这种特殊的物质从而成功的在水里面很好地生长的。

第二、荷叶之所以滴水不沾还有一个原因就是荷叶的结构决定了水滴在表面的张力不大的情况

荷叶的表面无数细微的突起更是为水滴无法落在上面提供了帮助,或许大家都有过观察,自己的水瓶装水的时候总是可以多装一些在表面也不会溢出来,这是因为水的本身就存在张力,而荷叶的细微的间隙正可以很好地破坏水滴表面的张力,没有张力,那么水滴就无法很好地粘在荷叶上面,张力被破坏以后,水滴就只能变成流体慢慢地往下面流动,知道离开荷叶表面的特殊结构,才能重新得到张力。

这就是荷叶滴水不沾的原理,也就是荷叶效应,希望我们的科学家能够根据此发明更多的东西!

四、荷叶效应是指什么?

荷叶不粘水的自清洁特性,人们把这种现象称为荷花效应。

当水滴落在荷叶上时,荷叶与水珠间形成一个高度的接触角(大于90度),使之聚集成珠状而不扩散。通常,人的皮肤具有轻微疏水性,接触角大约为90度,而荷叶接触角接近170度,叶子表面极度疏水。但是科学家发现,尽管实际接触荷叶的雨水很少,水滴滑落并不是没有摩擦,水滴带走了叶子上的尘土和细菌,起到“自清洁”的功能。

荷叶效应的应用

正因为荷叶表面“自清洁抗污”效应,启发了人们将超疏水表面应用到日常的自清洁技术中,例如:它可以用来防雪、防污染、抗氧化以及防止电流传导等,当然建筑物的墙面若能像荷叶一样,就不用担心被灰尘污染了。

对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。

即使表面上有了一些脏的东西,也会被滚动的水珠带走,这样表面就具有了“抗污”的能力。这种接触角大于150度的表面就被称为“超疏水表面”,而一般疏水表面的接触角仅大于90度。相信以后超疏水表面在工农业生产和人们的日常生活中会有更广阔的应用前景。

五、什么是荷叶效应?

中文名称:莲叶效应

拼音名称:lián ye xiào yìng

英文名称:Lotus Effect

莲叶效应主要是指莲叶表面具有超疏水(superhydrophobicity)以及自洁(self-cleaning)的特性。由于莲叶具有疏水、不吸水的表面,落在叶面上的雨水会因表面张力的作用形成水珠,换言之,水与叶面的接触角(contactangle)会大于150度,只要叶面稍微倾斜,水珠就会滚离叶面。因此,即使经过一场倾盆大雨,莲叶的表面总是能保持干燥;此外,滚动的水珠会顺便把一些灰尘污泥的颗粒一起带走,达到自我洁净的效果,这就是莲花总是能一尘不染的原因。

巴特洛特他们在显微镜下发现,莲叶的表面有一层茸毛和一些微小的蜡质颗粒,水在这些纳米级的微小颗粒上不会向莲叶表面其他方向蔓延,而是形成一个个球体,就是我们看到莲叶上滚动的雨水或者露珠,这些滚动的水珠会带走叶子表面的灰尘,从而清洁了叶子表面。

莲花效应的效率极高。科学家们模拟莲叶的表面,发明了纳米自清洁的衣料和建筑涂料,只需一点水形成水滴,就可以自动清洁衣物和建筑表面。

一种仿生复合材料所具有的特性,像荷叶一样具有自动清洁的功能,故称莲花效应。

刀刃的表面无法被水珠附着的事实已经被验证而且广为人知。但是人们往往会忽视这样的表面同样很难被弄脏。

在一个光滑的表面上脏的颗粒只会随着水滴的滴落而移动,他们附着在水滴滚动时产生的粗糙表面上从而被洗刷下来。这种关系只在最近才被注意到而且用实验得以证实。

因为在亚洲文化中被看作纯洁象征物的莲花的大型类似于盾牌形状的叶片上常常可以见到这种现象,所以人们把它成为“莲花效应”。

如果水滴滚过莲花的叶片,它们将卷起所有的灰尘微粒并将它们带离叶片。这个“莲花效应”原理如此有效,以至于即使是在被“蹂躏”过的莲花叶片上依然无法使得水珠和灰尘微粒附着。

特殊的表面结构和产生蜡质的功能使得莲花的叶片几乎不受其他自然界现象的影响。它与人类对自然界影响的反应很不相同,如对环境中化学物质的影响反应等等。对于目前不得不广为使用的属于表面活性剂的化学物质来说,为了达到保持植物中有效营养成分的目的,它们被全世界的植物代理商广泛使用。这些活性剂不仅破坏了蜡质晶体的完美结构,使得叶片容易被水润湿。而且造成这样的后果:就是植物上的脏物质将无法再被彻底清除,而在不理想的环境中,还将被孢子、真菌或者细菌这些可以感染植物的微生物所侵染。

莲叶效应描绘了一个很有效的生物模型系统,用它可以来制作人工的防污表面,因为它基于一个纯物理化学的原理。

有许多的领域和方面需要这种应用,如衣料的外表面、房顶、自动喷漆器等等。如果可以使得这些领域的自清洁功能得以实现,显然会带来很多好处,而且可以节省清洁花费的费用。在工业合作中,目前正在努力将莲叶效应转化成实际的技术应用。虽然肯定还需要耗费一些时间,但是肯定迟早会有这种实用的产品走向市场。