一、圆的周长怎么算 具体怎么计算

1、圆周长字母公式为:C=πD=2πR,π是圆周率,约等于3.14

2、公式中R/r为圆的半径,D/d为圆的直径。

3、用文字表示为:圆的周长=直径×圆周率=半径×2×圆周率。

4、例:知道圆的直径是50,求周长,当圆的直径为50时,C=3.14×50=157。

5、注意:如果题目中有单位,则计算结果也要跟上单位。

二、圆的周长公式是什么?

圆周长的计算

1、圆周长=圆周率×直径,字母公式:C=πd。

2、圆周长= 圆周率×半径×2,字母公式:C=2πr。

围成圆的曲线的长就是圆的周长。圆周长的长短,取决于圆的直径(半径)。

圆周率是指圆周长和它直径的比值。

在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个点。

在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},圆的标准方程是(x - a) ² + (y - b) ² = r ²。其中,o是圆心,r 是半径。

圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。

对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是概念性的图形。

扩展资料

半圆弧与半圆形的区别:

半圆弧:它的长度就是所在圆的周长的一半。

半圆形:它的长度是所在圆的周长的一半,再加上一条直径的长度。

圆的面积计算公式:

 , 

圆的面积求直径:

把圆分成若干等份,可以拼成一个近似的长方形。长方形的宽相当于圆的半径。

三、圆的周长如何计算?

圆的周长公式:圆的周长C = π X 直径  = π X 半径 X 2 (π=3.14)

当圆的直径为50时S=3.14X 50= 157

通常用圆规来画圆。 同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。

圆形一周的长度,就是圆的周长。能够重合的两个圆叫等圆有无数条对称轴。圆是一个正n边形(n为无限大的正整数),边长无限接近0但永远无法等于0。

扩展资料:

扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)

扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)

圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)

直线和圆位置关系:

1、直线和圆无公共点,称相离。 AB与圆O相离,d>r。

2、直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d

3、直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。圆心与切点的连线垂直于切线。AB与⊙O相切,d=r。(d为圆心到直线的距离)

参考资料来源:百度百科——圆

四、圆周长怎么计算?

圆周长公式:

1、圆周长=圆周率×直径,字母公式:C=πd。

2、圆周长= 圆周率×半径×2,字母公式:C=2πr。

围成圆的曲线的长就是圆的周长。圆周长的长短,取决于圆的直径(半径)。

圆可以看成由无数个无限小的点组成的正多边形,当多边形的边数越多时,其形状、周长、面积就都越接近于圆。

扩展资料:

顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角,圆周角等于相同弧所对的圆心角的一半。

在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。

五、圆周长的公式是什么

1.圆的周长C=2πr=πd

2.圆的面积S=πr²

3.扇形弧长l=nπr/180

4.扇形面积S=nπr²/360=rl/2

5.圆锥侧面积S=πrl

〖圆的定义〗

几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。

集合说:到定点的距离等于定长的点的集合叫做圆。

〖圆的相关量〗

圆周率:圆周长度与圆的直径长度的比叫做圆周率,

值是3 圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

〖圆和圆的相关量字母表示方法〗

圆—⊙ 半径—r 弧—⌒ 直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S

〖圆和其他图形的位置关系〗

圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

直线与圆有3种位置关系:

无公共点为相离;

有两个公共点为相交;

圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):

AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。

两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。

【圆的平面几何性质和定理】

[编辑本段]一有关圆的基本性质与定理

⑴圆的确定:不在同一直线上的三个点确定一个圆。 圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

⑵有关圆周角和圆心角的性质和定理 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。 一条弧所对的圆周角等于它所对的圆心角的一半。 直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

⑶有关外接圆和内切圆的性质和定理

①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;

②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

③S三角=1/2*△三角形周长*内切圆半径

④两相切圆的连心线过切点(连心线:两个圆心相连的线段)

〖有关切线的性质和定理〗

圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。

切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。

切线的性质:

(1)经过切点垂直于这条半径的直线是圆的切线。

(2)经过切点垂直于切线的直线必经过圆心。

(3)圆的切线垂直于经过切点的半径。

切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。

〖有关圆的计算公式〗

1.圆的周长C=2πr=πd

2.圆的面积S=πr^2;

3.扇形弧长l=nπr/180

4.扇形面积S=nπr^2;/360=rl/2

5.圆锥侧面积S=πrl

【圆的解析几何性质和定理】

[编辑本段]〖圆的解析几何方程〗

圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。

希望帮到你 望采纳 谢谢 加油!!